New and Bioactive Sesquiterpenes from Schisandra sphenanthera

by Khongorzul Mendbayar^a), I-Wen Lo^a), Chia-Ching Liaw^a), Yu-Chi Lin^a), Ahmed E. Fazary^a), Yuh-Chi Kuo^b), Hsiu-Ju Wang^c), Been Huang Chiang^c), Shorong-Shii Liou^d), and Ya-Ching Shen*^a)

- a) School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan (phone: +886-2-23123456, ext. 62226; fax: +886-02-23919098; e-mail: ycshen@ntu.edu.tw)
 - b) Department of Life Science, Fu-Jen University, Taipei Hsien, Taiwan
 c) Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
 - d) Department of Pharmacy, Tajen University, Ping-Tung, Taiwan

Three new sesquiterpenes, schisansphenins A (1) and B (2) and (-)- γ -cuparenol (3), were isolated from an acetone extract of the fruits of *Schisandra sphenanthera*. The known compound 4 was isolated for the frist time from a natural source. The structures of the isolated compounds were elucidated through extensive spectroscopic analyses, particularly 2D-NMR experiments (1 H, 1 H-COSY, HMQC, HMBC, and NOESY). A plausible biogenetic pathway for schisansphenin B (2) is proposed. Compounds 2 and 3 significantly reduced activation of NF-AT and NF- κ B in the luciferase-reporter assay.

Introduction. – As interest in traditional Chinese medicine has increased in recent years, the usage of important Chinese medicinal plants, including *Schisandra*, has attracted great attention among the public and herbalists [1]. The genus of *Schisandra* comprising 30 species of scandent and twining woody vines is widely distributed in East Asia, especially in southeastern and southcentral China [2]. The fruits of *S. sphenanthera* Rehder et E. H. Wilson are used as antitussive, tonic, and sedative agents under the name of Nanwuweizi in traditional Chinese medicine, together with the fruits of *S. chinensis* Baill. (Beiwuweizi) [3]. In the 2005 edition of the Chinese Pharmacopoeia, the fruits of *S. chinensis* and *S. sphenanthera* were listed as Fructus *Schisandrae chinensis* and Fructus *Schisandrae sphenantherae*, respectively [4]. Continued investigation of the constituents of *Schisandra* [5–8] led to the isolation of three new sesquiterpenes, *i.e.*, schisansphenins A (1) and B (2), and (–)-γ-cuparenol (3) (*Fig. 1*)¹),

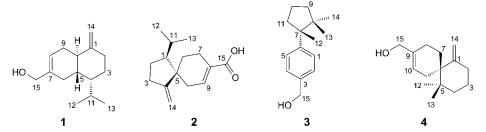


Fig. 1. Compounds $1-4^{1}$) isolated from S. sphenanthera

Trivial atom numbering, for systematic names, see Exper. Part.

which were isolated from the fruits of *S. sphenanthera* together with twelve known compounds, among them compound **4** which was isolated for the first time from a natural source. The structures of these compounds were elucidated through extensive spectroscopic analyses, such as 2D-NMR experiments (¹H, ¹H-COSY, HMQC, HMBC, and NOESY), and confirmed by HR-ESI-MS. We report herein the isolation, structural elucidation, and immuno-modulatory activities of compounds **1–4**.

Results and Discussion. – *Structure Elucidation*. Compound **1**¹) was obtained as a colorless oil and possessed the molecular formula $C_{15}H_{24}O$ as revealed by its HR-ESI-MS (m/z 243.1725 ([M+Na]⁺)) and NMR data ($Tables\ 1$ and 2). The IR spectrum showed absorption bands at 3369 (OH), 1647 (C=C), and 885 (=CH) cm⁻¹. In the NMR spectra, the assignments were guided by DEPT, HMQC, 1H , 1H -COSY, as well as HMBC experiments. The ^{13}C -NMR data ($Table\ 2$) showed the presence of 15 C-atoms, which were attributed by DEPT analysis to five CH (δ (C) 26.3, 44.3, 44.8, 46.6, and 123.7), six CH₂ (δ (C) 25.3, 26.0, 26.5, 36.2, 67.5, and 103.4), and two Me groups (δ (C) 15.1 and 21.5), and to two quaternary C-atoms (δ (C) 138.0 and 152.9). The MS and NMR data suggested the presence of a sesquiterpenoid skeleton. The 1H -NMR spectrum ($Table\ 1$) revealed the presence of one olefinic H-atom at δ (H) 5.81 (br. s, H–C(8)) connected to C(8) (δ (C) 123.7), an exocyclic CH₂= group at δ (H) 4.53 and 4.64 (2s, CH₂(14)) attached to C(1) (δ (C) 152.9), two isopropyl Me groups at δ (H) 0.71

Table 1. ${}^{1}H$ -NMR Data (400 MHz, CDCl₃) of $\mathbf{1}-\mathbf{4}^{1}$). δ in ppm, J in Hz.

		, 3, 3	, 11 ,	
	1	2	3	4
H-C(1)		1.48 – 1.54 (m)	7.36 (d, J = 8.0)	
$CH_2(2)$ or $H-C(2)$	2.06 (d, J = 16.1),	1.81 – 1.84 (<i>m</i> , 2 H)	7.28 (d, J = 8.0)	2.08 - 2.15,
	2.36 (d, J = 13.1)			2.20-2.30(2m)
$CH_2(3)$	2.10-2.18 (m)	2.41 - 2.45,		1.71 - 1.76,
		2.31-2.33(2m)		1.95 - 2.00 (2m)
$H-C(4)$ or $CH_2(4)$	$1.21 - 1.28 \ (m)$		7.28 (d, J = 8.0)	1.16 - 1.24,
				1.75 - 1.82 (2m)
H-C(5)	1.70 - 1.76 (m)		7.36 (d, J = 8.0)	
$CH_2(6)$	1.16 - 1.18,	1.46 - 1.54 (m)		
	1.72 - 1.82 (2m)			
$CH_2(7)$		2.41-2.45 (m)		1.50 – 1.65 (<i>m</i> , 2 H)
$H-C(8)$ or $CH_2(8)$	5.81 (br. s)			1.46 - 1.53,
				2.03-2.07(2m)
$CH_2(9)$ or $H-C(9)$	2.00-2.08,	7.16(s)	1.66 - 1.68,	
	1.44 - 1.48 (2m)		1.52 - 1.58 (2m)	
$H-C(10)$ or $CH_2(10)$	1.80 - 1.82 (m)	2.62, 2.03 (2d,	1.76 - 1.82 (m)	5.62(s)
		each $J = 10.3$)		
$H-C(11)$ or $CH_2(11)$	2.18-2.27 (m)	$1.71 - 1.76 \ (m)$	2.47 - 2.54,	2.05 - 2.10,
			1.66 - 1.73 (2m)	2.15-2.20(2m)
Me(12)	0.89 (d, J = 6.6)	0.88 (d, J = 6.6)	1.27(s)	0.88(s)
Me(13)	0.71 (d, J = 6.6)	0.96 (d, J = 6.6)	1.07(s)	0.83(s)
$CH_2(14)$ or $Me(14)$	4.64, 4.53 (2s)	4.76, 4.61 (2s)	0.56(s)	4.48, 4.87 (2s)
$CH_2(15)$	4.00 (br. s)	` ,	4.67 (s)	3.90 (br. s)
OH-C(15)	* /		3.59(s)	
* *			* *	

Table 2. ¹³ C-NMR Data	(100 MHz.	CDCl ₃) o	f 1-4a). δ in ppm.
-----------------------------------	-----------	-----------------------	--------	---------------------

	1	2	3	4
C(1)	152.9 (s)	54.0 (d)	127.3 (d)	148.8 (s)
C(2)	36.2 (t)	24.4 (t)	126.3(d)	32.1 (t)
C(3)	26.0(t)	29.8 (t)	137.8(s)	23.4 (t)
C(4)	46.6 (d)	159.3 (s)	126.3(d)	36.9 (t)
C(5)	44.8 (d)	46.2 (s)	127.3(d)	37.3 (s)
C(6)	26.5 (t)	24.0(t)	147.3 (s)	45.1 (s)
C(7)	138.0 (s)	21.0(t)	50.4(s)	23.7(t)
C(8)	123.7(d)	129.5 (s)	44.3 (s)	25.6 (t)
C(9)	25.3 (t)	142.2 (d)	39.7 (t)	136.3 (s)
C(10)	44.3 (d)	36.9 (t)	19.7(t)	122.3 (d)
C(11)	26.3 (d)	28.0(d)	36.8 (t)	28.7(t)
C(12)	21.5(q)	21.2 (q)	24.3 (q)	24.9(q)
C(13)	15.1 (q)	23.6(q)	23.5(q)	23.0(q)
C(14)	103.4(t)	104.4(t)	26.4(q)	110.5(t)
C(15)	67.5 (t)	171.9 (s)	65.2 (t)	67.3 (t)

^a) Assignments were supported by HMBC and DEPT techniques.

 $(d, J=6.6\,\mathrm{Hz}, \,\mathrm{Me}(13))$ and 0.89 $(d, J=6.6\,\mathrm{Hz}, \,\mathrm{Me}(12))$, attached to CH(11) ($\delta(\mathrm{C})$ 26.3), besides a OH–CH₂ group at $\delta(\mathrm{H})$ 4.00 (br. s, CH₂(15)) attached to a C=C bond C(7) at $\delta(\mathrm{C})$ 138.0), as confirmed by the HMBC (Fig.~2) and HMQC data. The connectivities $\mathrm{CH_2(2)/CH_2(3)/H-C(4)/H-C(11)/Me}(12)/\mathrm{Me}(13)$, $\mathrm{CH_2(6)/H-C(5)/H-C(10)/CH_2(9)/H-C(8)}$, and H–C(5)/H–C(4) were deduced by COSY cross-peaks (Fig.~2). The $^3J(\mathrm{C},\mathrm{H})$ and $^2J(\mathrm{C},\mathrm{H})$ correlations $\mathrm{CH_2(2)/C(1)}$ and C(10), $\mathrm{CH_2(14)/C(1)}$, C(2) and C(10), H–C(15)/C(6), C(7), and C(8), CH₂(6)/C(7) and C(8) in the HMBC experiments secured the assignment of all quaternary C-atoms (Fig.~2). The relative configuration of 1 was determined by interpretation of its NOESY data (Fig.~3) which revealed the correlations H–C(2)/H–C(14), H–C(5)/H–C(6), Me(12)/Me(13), H–C(8)/CH₂(15), H–C(11)/CH₂(15), and H–C(10)/Me(12) and Me(13). However, no correlation between H–C(5) and H–C(10) was observed. This finding established the *trans* ring junction of the cadinene skeleton. Accordingly, compound 1 was identified as schisansphenin A with a yet unknown absolute configuration.

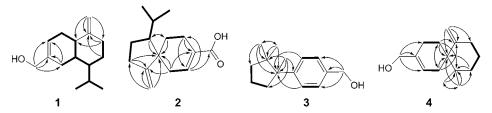


Fig. 2. Selected HMBC (arrows) and COSY (bold line) features of 1-4

The molecular formula of 2^1) was determined as $C_{15}H_{22}O_2$ from its HR-ESI-MS (m/z 257.1517 ([M+Na] $^+$)). The IR spectrum showed absorption bands at 3427 (OH),

Fig. 3. Key NOESY correlations of 1 and 2

2924 (CH), 1642 (C=CCOOH), and 675 (=CH) cm⁻¹. The ¹H-NMR data of **2** (*Table 1*) revealed the obvious signals of an isopropyl group ($\delta(H)$ 0.88 and 0.96 (each d, J=6.6 Hz, Me(12), Me(13)) and 1.71-1.76 (m, H–C(11)), an olefinic H-atom at a trisubstituted C=C bond ($\delta(H)$ 7.16 (s, H-C(9))), and an exocyclic CH₂= group ($\delta(H)$ 4.61 and 4.76 (2s, CH₂(14)). The ¹³C-NMR data of **2** (*Table 2*) showed signals of two Me groups ($\delta(C)$ 21.2 (C(12)) and 23.6 (C(13))), of a trisubstituted olefin moiety ($\delta(C)$ 129.5 (C(8)) and 142.2 (C(9))), of a methylidenecyclopentane moiety (δ (C) 159.3 (s, C(4)) and 104.4 (t, C(14)), and of a carboxylic acid group $(\delta(C) 171.9 (C(15)))$. Further were identified by DEPT analysis two CH (δ (C) 28.0 and 54.0) and five CH₂ groups ($\delta(C)$ 21.0, 24.0, 24.4, 29.8, and 36.9) and one quaternary C-atom ($\delta(C)$ 46.2). The spiro nature of the bicyclic sesquiterpene core of 2 was deduced from the presence of $\delta(C)$ 46.2 (C(5)) [9]. The connectivities $CH_2(3)/CH_2(2)/H-C(1)/H-C(11)/Me(12)/H$ Me(13), $CH_2(6)/CH_2(7)$, and $H-C(9)/CH_2(10)$ were easily deduced from the 1H_1 -COSY cross-peaks (Fig. 2). The location of a carboxylic acid group at C(8) was deduced from the HMBC cross-peak of H–C(9) (δ (H) 7.16, (s)) with C(15) (δ (C) 171.9). The structure of 2 was confirmed by further HMBC data as shown in Fig. 2. NOESY Correlations of 2 also suggested that the C=C bonds were located at C(4)=C(14) and C(8)=C(9). Additionally, the NOESY correlations $CH_2(14)/H-C(3)$ and H_{β} –C(10), H_{α} –C(10)/H–C(11), H–C(9), Me(12) and Me(13), and H–C(11)/ $\mathrm{CH}_2(6)$ clearly established the relative configuration at $\mathrm{C}(1)$ and $\mathrm{C}(5)$ (Fig. 3). Thus, on the basis of above evidence, the structure of 2 was elucidated, apart from its absolute configuration, and 2 was named schisansphenin B.

Compound 3^1) was obtained as colorless oil exhibiting $[\alpha]_D^{25} = -89$ (c = 0.13, CH₂Cl₂). The IR spectrum showed absorption bands at 3414 (OH), 2949 (CH), 1457 (C=C), and 1105 (C=O) cm⁻¹. The ¹H- and ¹³C-NMR and DEPT spectra of **3** (*Tables 1* and 2) revealed the conspicuous signals of three Me groups (δ (H) 0.56 (s, Me(14)), 1.07 (s, Me(13)), and 1.27 (s, Me(12)); δ (C) 23.5 (C(13)), 24.3 (C(12)), and 26.4 (C(14))) and of a 1,4-disubstituted benzene ring (δ (H) 7.28 (d, J = 8.0 Hz, H=C(2), H=C(4)) and 7.36 (d, J = 8.0 Hz, H=C(1), H=C(5)); δ (C) 126.3 (C(2), C(4)) and 127.3 (C(1), C(5))). In addition, the ¹³C-NMR and DEPT spectra (*Table 2*) showed the presence of four CH₂ groups (δ (C) 19.7, 36.8, 39.7, and 65.2) and two quaternary C-atoms (δ (C) 44.3 and 50.4). The ¹H, ¹H-COSY cross-peaks H=C(1)/H=C(2), H=C(4)/H=C(5), CH₂(9)/CH₂(10)/CH₂(11) and the ³J(C,H) and ²J(C,H) correlations H=C(1) and H=C(5)/C(7), Me(12)/C(6), C(7), C(8), and C(11), Me(13)/C(7), C(8), and C(14), Me(14)/C(7), C(8), C(9), and C(13), and CH₂(15)/C(2), C(3), and C(4) in the HMBC

experiments secured the assignment of all quaternary C-atoms of **3** (*Fig.* 2). The structure and spectroscopic data were found to be identical with those of γ -cuparenol [10]. However, γ -cuparenol showed a positive optical rotation ($[\alpha]_D^{27} = +92$) and had a (7S) configuration. Thus, the negative optical rotation of **3** ($[\alpha]_D^{25} = -89$) established its (7R) configuration [11].

The HR-ESI-MS analysis of 4^{1}) revealed a molecular-ion peak at m/z 243.1725 corresponding to the molecular formula $C_{15}H_{24}O$, in agreement with the NMR data. The colorless oil showed a negative optical rotation. The IR spectrum exhibited bands at 3442 (OH), 2930 (CH), 2056, 1634 (C=C), and 1385 (=CH) cm⁻¹. The ¹³C-NMR spectrum of 4 (Table 2) displayed the signals of one CH, eight CH₂, and two Me groups and of four quaternary C-atoms indicating a sequiterpene skeleton with 15 C-atoms. From HMBC data, the ${}^{1}H$, ${}^{13}C$ -NMR long-range correlations Me(13) ($\delta(H)$ 0.83)/C(4), C(5), and C(6), and Me(12) ($\delta(H)$ 0.88)/C(4), C(5), and C(6), CH₂(3)/<math>C(1), and $CH_2(8)/C(9)$ were deduced (Fig. 2). The presence of the OH–CH₂(15) group ($\delta(H)$ 3.90 (br. s)) was confirmed by DEPT and HMQC analyses. The ¹H, ¹H-cosy cross-peaks $CH_2(2)/CH_2(3)/CH_2(4)$, $CH_2(7)/CH_2(8)$, and $H-C(10)/CH_2(11)$ were observed. The relative configuration of 4 was deduced from a NOESY experiment, establishing the correlations $H-C(10)/CH_2(15)$, Me(12)/Me(13), $CH_2(4)$, and $CH_2(11)$, and $Me(13)/CH_2(11)$ H_{β} -C(7). The above spectroscopic data established the structure of 4 to be 7.7dimethyl-11-methylenespiro[5.5]undec-2-ene-3-methanol, identical with chamigrenol whose absolute configuration was not elucidated, however [12]. Compound 4 was isolated for the first time from a natural source.

The eleven known compounds were determined to be macelignan [13], 1-(3,4-dimethoxyphenyl)-4-(3,4-methylenedioxyphenyl)-2,3-dimethylbutane [14], chicanine [15], *meso*-dimethyl dihydroguaiaretic acid [16], schisantherin D [17], 6-O-benzoylgomisin O [18], *erythro*-austrobailignan-6 [19], gomisin B [20], schisantherin A [21][22], gomisin G [23], and gomisin C [20] by comparison of their spectral data with literature values. Mostly, sesquiterpenes are derived from the single acyclic precursor farnesyl diphosphate (FPP). The cyclizations of FPP may occur at the distal C=C bond to generate either the ten-membered ((*E,E*)-germacradienyl cation) or elevenmembered (*trans*-humulyl cation) ring, but topological constraints prevent cyclization at the central C=C bond without prior isomerization of FPP to the *cisoid* nerolidyl diphosphate (NPP), thereby permitting the formation of the six-membered ring (bisabolyl cation) [5]. We propose a possible biogenetic pathway for the formation of schisansphenin B as shown in the *Scheme* [20][24][25].

To evaluate a potential immune-modulatory activity, compounds 1-4 were tested on NF-AT and NF- κ B activation by using the luciferase-reporter assay [26] [27]. As shown in *Table 3*, the results indicated that PHA significantly induced NF-AT and NF- κ B activation in Jurkat cells (p < 0.0001). Cyclosporin A (0.25 μ M) and pyrrolidine dithiocarbamate PDTC (50 μ M) significantly interrupted the luciferase activities (p < 0.001). PHA-Induced luciferase activity was significantly decreased by compounds 2 and 3 (p < 0.001), while NF-AT and NF- κ B activation were not affected by compounds 1 and 4. These results suggested that compounds 2 and 3 may be potential immune-modulatory agents.

Scheme. Plausible Biogenetic Pathway for Schisansphenin B (2)

Table 3. Effects of Compounds 1-4 on NF-AT and NF-κB Activation Determined by the Luciferase-Reporter Assay^a)

	Luciferase activity (relative light units)		
	resting cells	PHA-activated cells	
DMSO (0.1%)	73.0 ± 6.6	4916.3 ± 117.7 ^b)	
Cyclosporin A (0.25 µм)	65.0 ± 10.1	737.4 ± 101.5	
1	73.7 ± 8.5	4712.3 ± 234.4	
2	52.3 ± 3.0	$2698.3 \pm 129.8^{\circ}$	
3	64.3 ± 7.8	$3765.3 \pm 177.9^{\circ}$	
4	59.3 ± 3.1	4631.3 ± 365.9	
NF-κB			
DMSO (0.1%)	108.3 ± 7.0	$3648.0 \pm 250.2^{\mathrm{b}}$	
PDTC ^d) (50 μm)	121.5 ± 11.5	280.5 ± 75.8	
1	108.0 ± 1.4	4089.5 ± 191.6	
2	114.0 ± 2.8	$2227.0 \pm 21.2^{\circ}$	
3	113.5 ± 12	$2511.7 \pm 206.4^{\circ}$	
4	111.5 ± 6.4	3694.5 ± 729	

^{a)} Amount of compound tested, 10 µg/ml; the data is the mean \pm s.d. of three independent determinations. ^{b)} p < 0.0001: vs. cells treated with DMSO. ^{c)} p < 0.001: vs. cells treated with DMSO and PHA. ^{d)} PDTC = pyrrolidine dithiocarbamate

Experimental Part

General. Column chromatography (CC): silica gel 60 (SiO₂; Merck); FC = flash chromatography. HPLC: Hitachi-L-6250 system; flow rate 2 ml/min; UV detection at 254 and 220 nm); LiChrospher® Si 60 (5 μm, 250-10; Merck) and LiChrospher® 100 RP-18e (5 μm, 250-10; Merck). Optical rotation: Jasco-DIP-1000 polarimeter. UV Spectra: Hitachi-U-3210 spectrophotometer; $\lambda_{\rm max}$ (log ε) in nm. CD Spectra: Jasco-J-720 spectrophotometer. IR Spectra: Hitachi-T-2001 spectrophotometer; $\tilde{\nu}$ in cm⁻¹. 1 H- and 13 C-NMR Spectra: Bruker-FT-400 spectrometer; at 400 and 100 MHz, resp.; δ in ppm rel. to Me₄Si as internal standard, J in Hz. EI-MS: VG-Quattro-5022 spectrometer; in m/z. ESI-MS: Bruker-Daltonics-ApexII spectrometers; in m/z.

Plant Material. The fruits of Schisandra sphenanthera were purchased from Zu-Nan. A voucher specimen (code CP99-1) was deposited with the School of Pharmacy, National Taiwan University, Taipei, Taiwan.

Extraction and Isolation. The fruits (2.2 kg) were extracted three times at r.t. with acetone (101 and 3 d each time), and the combined extract was concentrated. The residue was partitioned between hexane/ MeOH/H₂O 4:3:1. The resulting MeOH/H₂O extract (69.6 g) was partitioned between CH₂Cl₂/H₂O 1:1 and the org. phase concentrated to give the CH₂Cl₂ extract (28.9 g). The CH₂Cl₂ extract was subjected to FC (SiO₂, hexane/AcOEt 30:1 \rightarrow 1:3 and AcOEt/MeOH 30:1 \rightarrow 3:1): Fractions 1–10. Fr. 2 was subjected to HPLC (Si 60, hexane/AcOEt 6:1): 1 (4.1 mg) and 4 (10.3 mg). Fr. 4 was purified by CC (Sephadex LH-20, MeOH (21): Fr. 4.1–4.5. Fr. 4.5 (84.7 mg) was subjected to HPLC (Si 60, hexane/AcOEt 3:1): 2 (4.3 mg) and 3 (13.8 mg).

Schisansphenin A (= rel-(4aR,8R,8aS)-1,4,4a,5,6,7,8,8a-Octahydro-5-methylene-8-(1-methylethyl)-naphthalene-2-methanol; 1): Colorless oil. [a] $_{D}^{13}$ = -46 (c = 0.05, CH₂Cl₂). IR (CH₂Cl₂): 3369 (OH), 2928 (CH), 1647 (C=C), 885 (=CH). 1 H- and 13 C-NMR: Tables 1 and 2. HR-ESI-MS: 243.1725 ([M + Na] $^{+}$, C₁₅H₂₄NaO $^{+}$; calc. 243.1728).

Schisansphenin B (= rel-(1R,5R)-1-Methylene-4-(1-methylethyl)spiro[4.5]dec-7-ene-8-carboxylic Acid; 2): Colorless oil. [a] $_{0}^{25}$ = +48 (c = 0.01, CH $_{2}$ Cl $_{2}$). IR (CH $_{2}$ Cl $_{2}$): 3427 (OH), 2924 (CH), 1642 (C=C), 675. 1 H- and 13 C-NMR: Tables 1 and 2. HR-ESI-MS: 257.1517 ([M + Na] $^{+}$, C $_{15}$ H $_{22}$ NaO $_{2}^{+}$; calc. 257.1519).

(-)-γ-Cuparenol (=4-[(1R)-1,2,2-Trimethylcyclopentyl]benzenemethanol; **3**): Colorless oil. [α]_D⁵ = -89 (c = 0.13, CH₂Cl₂). IR (CH₂Cl₂): 3414 (OH), 2949 (CH), 1457 (C=C), 1105 (C=O). 1 H- and 1 C-NMR: Tables 1 and 2. HR-ESI-MS: 219.1740 ([M + H] $^+$, C₁₅H₂₅O $^+$; calc. 219.1750).

(6R or 6S)-7,7-Dimethyl-11-methylenespiro[5.5]undec-2-ene-3-methanol (4): Colorless oil. $[a]_{D}^{25} = -21.3$ (c = 0.03, CH₂Cl₂). IR (CH₂Cl₂): 3442 (OH), 2930 (CH), 1634 (C=C), 1385 (C=CH). 1 H- and 13 C-NMR: Table 1 and 2. HR-ESI-MS: 243.1725 ($[M + Na]^{+}$, $C_{15}H_{24}NaO^{+}$; calc. 243.1728).

Luciferase-Reporter Assay [26] [27]. Jurkat cells $(5\cdot 10^4)$, a T lymphocytes cell line, were stably transfected with pGL4.30 (luc2P/NF-AT-RE/Hygro) or pGL4.30 (luc2P/NF- κ B-RE/Hygro), seeded into 96-well plates and cultured with PHA (phytohemaglutin; 5 μg/ml) in the presence or absence of compounds 1, 2, 3, or 4 (10 μg/ml) for 4 h. NF-AT Inhibitor cyclosporin A (0.25 μm) and NF- κ B inhibitor pyrrolidine dithiocarbamate (PDTC; 50 μm) were utilized as positive controls [26]. Total cell lysates were extracted with 1X reporter lysis buffer (*Promega*, USA), then 10 μg of total cell lysates were used to determine the luciferase activity by the luciferase assay system (*Promega*, USA). Data are presented as mean \pm s.d., and the differences between groups were assessed with *Student*'s *t*-test at a significant level of p < 0.05.

REFERENCES

- [1] Y. Sun, X. Wen, H. Huang, Biochem. Syst. Ecol. 2010, 38, 257.
- [2] R. M. K. Saunders, Syst. Bot. Monogr. 2000, 58, 1.
- [3] W. Z. Song, P. G. Xiao, Chin. Tradit. Herb Drugs 1982, 13, 40.
- [4] Chinese Pharmacopoeia Commission, 'Pharmacopoeia of the People's Republic of China', People's Medical Publishing House, Beijing, 2005, Vol. 1.
- [5] C.-C. Liu, M. H. Abd. El-Razek, C.-C. Liaw, Y.-B. Cheng, C.-K. Chen, C.-T. Chien, Y.-H. Kuo, S.-S. Liou, Y.-C. Shen, *Planta Med.* 2010, 76, 1605.
- [6] Y.-B. Cheng, M.-T. Chang, Y.-W. Lo, C.-J. Ho, Y.-C. Kuo, C.-T. Chien, S.-Y. Chen, S.-S. Liou, Y.-H. Kuo, Y.-C. Shen, J. Nat. Prod. 2009, 72, 1663.
- [7] Y.-B. Cheng, T.-C. Liao, Y.-W. Lo, Y.-C. Chen, Y.-C. Kuo, S.-Y. Chen, C.-T. Chien, T.-L. Hwang, Y.-C. Shen, J. Nat. Prod. 2010, 73, 1228.
- [8] Y.-B. Cheng, T.-C. Liao, I.-W. Lo, Y.-C. Chen, Y.-C. Kuo, S.-Y. Chen, C.-T. Chien, Y.-C. Shen, Org. Lett. 2010, 12, 1016.
- [9] Y. H. Kuo, L. L. Shiu, Chem. Pharm. Bull. 1996, 44, 1758.

- [10] B. Tomita, Y. Hirose, T. Nakatsuka, Tetrahedron Lett. 1968, 9, 843; S. Itô, K. Endo, H. Honma, K. Ota, Tetrahedron Lett. 1965, 6, 3777.
- [11] A. Matsuo, M. Nakayama, T. Maeda, Y. Noda, S. Hayashi, Phytochemistry 1975, 14, 1037.
- [12] Y. Ohta, Y. Hirose, Tetrahedron Lett. 1968, 9, 2483.
- [13] W. S. Woo, K. H. Shin, H. Wagner, H. Lotter, Phytochemistry 1987, 26, 1542.
- [14] B.-G. Wang, X. Hong, L. Li, J. Zhou, X.-J. Hao, *Planta Med.* **2000**, *66*, 511.
- [15] J.-S. Liu, M.-F. Huang, Y.-L. Gao, J. A. Findlay, Can. J. Chem. 1981, 59, 1680.
- [16] M. Miyazawa, H. Kasahara, H. Kameoka, Phytochemisty 1997, 46, 1173.
- [17] Y. Ikeya, H. Taguchi, I. Yosioka, Chem. Pharm. Bull. 1982, 30, 3207.
- [18] C.-C. Chen, C.-C. Shen, Y.-Z. Shih, T.-M. Pan, J. Nat. Prod. 1994, 57, 1164.
- [19] N. Nakatani, K. Ikeda, H. Kikuzaki, M. Kido, Y. Yamaguchi, *Phytochemistry* 1988, 27, 3127.
- [20] H. Taguchi, Y. Ikeya, Chem. Pharm. Bull. 1975, 23, 3296.
- [21] S. S. Liu, S. D. Fang, M. F. Huang, Y. L. Kao, J. S. Hsu, Sci. Sin. 1978, 21, 483.
- [22] Y. Ikeya, E. Miki, M. Okada, H. Mitsuhashi, J. G. Chai, Chem. Pharm. Bull. 1990, 38, 1408.
- [23] H. Taguchi, Y. Ikeya, Chem. Pharm. Bull. 1977, 25, 364.
- [24] D. E. Cane, Chem. Rev. 1990, 90, 1089.
- [25] M. Tori, H. Arbiyanti, Z. Taira, Y. Asakawa, Phytochemistry 1993, 32, 335.
- [26] Y. C. Chen, W. J. Tsai, M. H. Wu, L. C. Lin, Y. C. Kuo, Br. J. Pharmacol. 2007, 150, 298.
- [27] K. A. Chunag, C. H. Lieu, W. J. Tsai, M. H. Wu, Y. C. Chen, J. F. Liao, C. C. Wang, Y. C. Kuo, Braz. J. Med. Biol. Res. 2010, 43, 931.

Received May 18, 2011